Pengelolaan Sumberdaya Lahan dan Air Pendukung Pengelolaan DAS
LEMBAR PENGESAHAN

RENCANA PENELITIAN INTEGRATIF (RPI)
TAHUN 2010 - 2014

PENGELOLAAN SUMBERDAYA LAHAN DAN AIR
PENDUKUNG PENGELOLAAN DAS

Jakarta, Februari 2010

Disetujui Oleh:
Kepala Pusat,
Ir. Adi Susmianto, M.Sc.
NIP. 19571221 198203 1 002

Mengesahkan:
Kepala Badan,
Dr. Ir. Tachrir Fathoni M.Sc
NIP. 19560929 198202 1 001

Koordinator,
Dr. Pratiwi
NIP. 19610416 198603 2 002
Daftar Isi

Lembar Pengesahan ... 203
Daftar Isi .. 205
Daftar Tabel .. 207
I. ABSTRAK .. 209
II. LATAR BELAKANG ... 209
III. RUMUSAN MASALAH... 212
IV. HIPOTESIS ... 213
V. TUJUAN DAN SASARAN .. 213
VI. LUARAN ... 214
VII. RUANG LINGKUP .. 215
VIII. KOMPONEN PENELITIAN ... 215
IX. METODOLOGI ... 216
X. RENCANA TATA WAKTU .. 218
XI. RENCANA LOKASI DAN UPT TERKAIT............................. 221
XII. RENCANA BIAYA .. 221
XIII. ORGANISASI ... 223
XIV. DAFTAR PUSTAKA .. 224
XV. KERANGKA KERJA LOGIS ... 225
XVI. EVALUASI .. 234
Daftar Tabel

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.</td>
<td>Rencana Tata Waktu</td>
<td>219</td>
</tr>
<tr>
<td>Table 2.</td>
<td>Rencana Anggaran Penelitian Integratif 2010 – 2014</td>
<td>222</td>
</tr>
<tr>
<td>Table 3.</td>
<td>Organisasi Kegiatan RPI Pengelolaan Sumberdaya Lahan dan Air Pendukung DAS</td>
<td>223</td>
</tr>
<tr>
<td>Table 4.</td>
<td>Evaluasi RPI Pengelolaan Sumberdaya Lahan dan Air Pendukung Pengelolaan DAS</td>
<td>234</td>
</tr>
</tbody>
</table>
I. ABSTRAK

Daerah Aliran Sungai (DAS) adalah suatu wilayah daratan yang merupakan satu kesatuan wilayah daratan dengan anak sungai dan anak-anak sungainya, yang berfungsi menampung, menyimpan, dan mengalirkan air yang berasal dari curah hujan ke danau atau ke laut secara alami, yang batas di darat merupakan pemisah topografi dan batas di laut sampai dengan daerah perairan yang masih terpengaruh aktivitas daratan (UU No.7 Tahun 2004). Dengan demikian karakteristik pantai selain dipengaruhi oleh sifat laut juga dipengaruhi sifat yang berasal dari wilayah hulu, baik sedimen maupun bahan maupun bahan yang terangkut lainnya. Faktor utama yang menghubungkan bagian hulu (pegunungan dan perbukitan) dengan hilir (wilayah pantai) dalam suatu DAS adalah siklus/daur hidrologi. Oleh karena itu perubahan penggunaan lahan di daerah hulu akan memberikan dampak di daerah hilir dalam bentuk fluktuasi debit air, kualitas air dan transpor sedimen serta bahan-bahan terlarut di dalamnya. Pengelolaan lahan dan air adalah vital dalam sistem pengelolaan DAS.

Adanya peningkatan jumlah penduduk maka akan meningkatkan kebutuhan akan sandang, pangan dan papan serta energi. Akibatnya akan terjadi peningkatan pengurangan areal hutan untuk keperluan lain. Peningkatan intensitas perubahan alih fungsi hutan ini akan berpengaruh negatif terhadap kondisi hidrologis DAS seperti menurunnya resapan air ke dalam tanah, meningkatnya debit puncak, fluktuasi debit antar musim, meningkatnya aliran permukaan, banjir dan kekeringan. Pengelolaan lahan dan air merupakan suatu kegiatan yang menjaga fungsi daya dukung lahan dan air bagi kehidupan flora, fauna dan manusia. Pengelolaan lahan dan air dilakukan antara lain dengan menambahkan lahan dan air disesuaikan atau tidak melebihi daya dukungnya agar sistem lahan dan air tidak rusak dan jasa sistem tersebut optimal dan terus menerus (sustainable) bagi kesejahteraan masyarakat. Disamping itu, untuk memperbaiki lahan-lahan yang terdegradasi terutama di daerah hulu, dapat dilakukan dengan merehabilitasi lahan-lahan tersebut, agar kualitas lingkungan di daerah hilir dapat menjadi lebih baik. Untuk itu diperlukan pengelolaan sumberdaya lahan dan air di dalam DAS dari hulu sampai ke hilir yang dilakukan secara terpadu oleh semua pihak dengan mempertimbangkan aspek biofisik, sosial dan ekonomi.

Kata kunci: pengelolaan sumberdaya lahan dan air, pengelolaan DAS, rehabilitasi, konservasi tanah dan air

II. LATAR BELAKANG

Daerah Aliran Sungai (DAS) adalah suatu wilayah daratan yang merupakan satu kesatuan dengan anak sungai dan anak-anak sungainya,

Daerah Aliran Sungai dapat dipandang sebagai sumberdaya alam yang berupa stok dengan ragam kepemilikan (private, common, state property) dan berfungsi sebagai penghasil barang dan jasa, baik bagi individu dan atau kelompok masyarakat maupun bagi publik secara luas serta menyebabkan interdependensi antar pihak, individu dan atau kelompok masyarakat (Kartodiardjo et al., 2004). Dengan demikian DAS dapat dipandang sebagai suatu sistem, dimana dalam suatu DAS terdapat berbagai komponen yang saling berkaitan satu sama lainnya. Oleh karena itu perlu adanya pengelolaan yang holistik dan terpadu terhadap suatu DAS.

Komponen sumberdaya alam yang terdapat dalam DAS antara lain hutan, lahan dan air serta jasa-jasa lingkungan. Pengelolaan lahan dan air adalah vital dalam sistem pengelolaan DAS. Oleh karena itu lahan dan air merupakan komponen pokok yang menunjang kehidupan yang berada di dalam sistem DAS tersebut. Kehidupan dalam sistem DAS yang terdiri dari flora, fauna dan manusia sangat tergantung pada jasa tanah dan air dalam sistem penunjang kehidupan. Oleh karena itu tanah, air dan kehidupan tidak pernah dapat dipisah-pisahkan. Kehidupan dapat membentuk komunitas flora dan fauna (hutan, tanah, lahan pertanian, dan sebagainya) dan masyarakat manusia (desa, kota) dengan berbagai perangkatnya yang berada di dalam sistem DAS senantiasa bergantung kehidupannya pada tanah dan air dalam sistem lahan. Oleh karena itu pengelolaan DAS tidak pernah dapat dipisahkan dengan pengelolaan lahan dan air.
Agar sistem DAS dapat berfungsi secara lestari maka pengelolaan DAS harus ditunjang sepenuhnya oleh pengelolaan lahan dan air yang senantiasa mempertimbangkan daya dukungnya.

Adanya peningkatan jumlah penduduk maka akan meningkatkan kebutuhan akan sandang, pangan dan papan serta energi. Akibatnya akan terjadi peningkatan pengurangan areal hutan untuk keperluan lain. Peningkatan intensitas perubahan alih fungsi hutan ini akan berpengaruh negatif terhadap kondisi hidrologis DAS seperti menurunnya resapan air ke dalam tanah, meningkatnya debit puncak, fluktuasi debit antar musim, meningkatnya aliran permukaan, banjir dan kekeringan.

Salah satu upaya untuk menghadapi degradasi hutan terutama di daerah hulu adalah dengan merehabilitasi lahan-lahan tersebut, agar kualitas lingkungan di daerah hilir dapat menjadi lebih baik. Untuk itu diperlukan pengelolaan sumberdaya lahan dan air di dalam DAS dari hulu sampai ke hilir yang dilakukan secara terpadu oleh semua pihak dengan mempertimbangkan aspek biofisik, sosial dan ekonomi.

Pentingnya posisi pengelolaan sumberdaya lahan dan air sebagai unit perencanaan yang utuh memiliki tujuan untuk menjaga kesinambungan pemanfaatan sumberdaya hutan, tanah dan air dalam sistem DAS. Dalam upaya menciptakan pendekatan pengelolaan DAS secara terpadu, diperlukan perencanaan secara terpadu yang didukung oleh pengelolaan sumberdaya lahan dan air dari hulu sampai hilir.
Pengelolaan lahan dan air merupakan suatu kegiatan yang menjaga fungsi daya dukung lahan dan air bagi kehidupan flora, fauna, dan manusia. Pengelolaan lahan dan air dilakukan antara lain dengan senantiasa menjaga penggunaan lahan dan air yang disesuaikan atau tidak melebihi daya dukungnya agar sistem lahan dan air tidak rusak dan jasa sistem tersebut optimal dan terus menerus (sustainable) bagi kesejahteraan masyarakat. Pengelolaan lahan dan air bertujuan untuk mengatur pemanfaatan sumberdaya lahan secara optimal, mendapatkan hasil maksimal dan mempertahankan kelestarian sumberdaya lahan dan air itu sendiri.

Sebenarnya pengelolaan lahan dan air melalui kegiatan rehabilitasi telah banyak dilakukan, namun keberhasilannya masih rendah. Di sisi lain kemampuan pemerintah untuk merehabilitasi hutan/lahan hanya berkisar 1-2 juta ha per tahun, itu pun kalau semuanya dinilai berhasil untuk dapat menutupi lahan yang terbuka (Rustam, 2003 dalam Darwo, 2007).

Rendahnya tingkat keberhasilan pengelolaan lahan antara lain adalah kurangnya informasi mengenai teknologi untuk merehabilitasi hutan dan lahan terdegradasi. Disamping itu sebagian besar masyarakat setempat yang dialihkan dalam kegiatan tersebut hanya sebagai kerja upahan dan tidak diajak berperan aktif dalam analisis masalah dan pengambilan keputusan. Disamping itu agar rehabilitasi hutan dan lahan dapat berhasil dengan baik, diperlukan upaya yang seksama dalam menerapkan teknik konservasi tanah dan air, serta pemilihan jenis yang sesuai dan dapat beradaptasi dengan lingkungan yang kurang menguntungkan serta perbaikan kondisi fisik dan kimia tanah sebelum revegetasi. Jika hal ini dapat dilakukan, maka diharapkan pengelolaan sumberdaya lahan dan air dapat menunjang pengelolaan DAS, sehingga DAS dapat berfungsi secara lestari.

III. RUMUSAN MASALAH

Masalah yang dihadapi dalam pengelolaan sumberdaya lahan dan air adalah rendahnya produktivitas lahan kawasan hutan dan adanya kemiskinan karena kelebihan tenaga kerja di subsistem sosial. Atas dasar tersebut maka perlu peningkatan produktivitas kawasan hutan, baik ditinjau dari aspek hasil hutan kayu maupun non kayu, maupun untuk menjaga kelestarian dan perlindungan sumberdaya alam serta lingkungan hidup.

Di lain pihak kemampuan dan daya dukung lahan relatif rendah, sehingga jika pemanfaatan lahan melebihi kapasitas produksinya, maka yang terjadi adalah lahan-lahan terdegradasi. Lahan terdegradasi ini sebagian besar akibat dari adanya kegiatan-kegiatan: penambangan yang tidak mengikuti
aturan yang ada, penebangan hutan secara illegal, perambahan kawasan hutan, bencana alam, dan sebagainya. Meningkatnya lahan terdegradasi ini menyebabkan fungsi hutan baik sebagai penghasil kayu dan non kayu serta pengatur siklus hidroorologi menjadi menurun. Untuk itu perlu dicari upaya-upaya memperbaiki lahan yang terdegradasi.

Salah satu upaya untuk mengembalikan fungsi lahan-lahan terdegradasi adalah dengan merehabilitasi lahan tersebut, melalui berbagai pendekatan. Salah satu caranya adalah mengkombinasikan teknik-teknik rehabilitasi lahan dan pengelolaan tanah dan air yang sesuai dengan kondisi lahan dan merangsang partisipasi aktif (peran serta) masyarakat di sekitar kawasan hutan. Agar masyarakat yakin bahwa kegiatan tersebut memberi manfaat terhadap mereka, maka kegiatannya dapat dilakukan dengan partisipasi aktif masyarakat sejak perencanaan sampai pelaksanaan dan monitorinya. Demonstrasi plot (demplot) perlu dibuat sebagai sarana untuk mempermudah meyakinkan masyarakat.

IV. HIPOTHESES

Implementasi rehabilitasi lahan dan pengelolaan sumberdaya lahan dan air dengan menerapkan teknologi rehabilitasi lahan dan konservasi tanah dan air dan teknik pemilihan jenis dan teknik silvikultur lainnya, serta memperhatikan pendekatan partisipasi masyarakat dapat memperbaiki fungsi DAS dan mempertahankan daya dukung lahan dan lingkungannya, sehingga DAS dapat berfungsi secara lestari.

V. TUJUAN DAN SASARAN

Tujuan dari Rencana Penelitian Integratif adalah menyediakan informasi dan teknologi tepat guna, untuk menunjang kelestarian pengelolaan sumberdaya lahan dan air, khususnya yang terkait dengan rehabilitasi lahan terdegradasi agar sumberdaya lahan dan air yang terdegradasi dapat berfungsi kembali sebagai habitat flora, fauna dan secara keseluruhan sebagai penyangga kehidupan, termasuk didalamnya dapat meningkatkan perekonomian rakyat dengan meningkatkan partisipasi masyarakat dari mulai perencanaan, kegiatan pelaksanaan dan pengelolaan pasca rehabilitasi lahan.

Sasaran yang akan dicapai:
A. Teknik Pengelolaan Sumberdaya Lahan dan Air Wilayah Daratan:

1. Tersedianya Data dan Informasi tentang Model-model Rehabilitasi Lahan dan Konservasi Tanah dan Air dengan Pendekatan Partisipatif;
2. Tersedianya Data dan Informasi Teknik Mitigasi Tanah Longsor;
3. Tersedianya Data dan Informasi Teknik Rehabilitasi dan Restorasi Lahan Terdegradasi dalam suatu DAS khususnya di Lahan Bekas Tambang (emas, timah, batubara);
4. Tersedianya Data dan Informasi Kelayakan Teknik Aerial seeding dan Hydroseeding;
5. Tersedianya Data dan Informasi Model-model Tata Guna Lahan Untuk Optimalisasi Tataair.

B. Teknik Pengelolaan Sumberdaya Lahan dan Air Wilayah Rawa Gambut:

Tersedianya Data dan Informasi Teknik Pengelolaan Sumberdaya Lahan dan Air pada Wilayah Rawa Gambut.

C. Teknik Pengelolaan Sumberdaya Lahan dan Air Wilayah Pantai:

Tersedianya Data dan Informasi Teknik Pengelolaan Sumberdaya Lahan dan Air pada Wilayah Pantai.

VI. LUARAN

Luaran yang akan dihasilkan adalah:

A. Luaran 1: Teknik Pengelolaan Sumberdaya Lahan dan Air Wilayah Daratan

1. Demplot Model-model Rehabilitasi Lahan dan Konservasi tanah dan Air dengan Pendekatan Partisipatif;
2. Pedoman Teknik Mitigasi Longsor;
3. Pedoman Teknik Rehabilitasi dan Restorasi Lahan Bekas Tambang (emas, timah, batubara);
4. Kajian Kelayakan Teknik Aerial Seeding dan Hydroseeding;
5. Modelling Tata Guna Lahan untuk Optimalisasi Tataair.
B. **Luaran 2 : Teknik Pengelolaan Sumberdaya Lahan dan Air Wilayah Rawa Gambut**, berupa:

Pedoman Teknik Pengelolaan Sumberdaya Lahan dan Air Wilayah Rawa Gambut

C. **Luaran 3 : Teknik Pengelolaan Sumberdaya Lahan dan Air Wilayah Pantai**

Pedoman Teknik Pengelolaan Sumberdaya Lahan dan Air Wilayah Pantai

VII. RUANG LINGKUP

Sehubungan dengan latar belakang dan tujuan yang telah disebutkan di atas, maka ruang lingkup penelitian ini meliputi lahan terdegradasi yang berupa bagian dari DAS atau sub DAS yang dianggap kritis termasuk lahan bekas tambang dan daerah pantai serta gambut, yang menyebabkan fungsi hidroorologis lahan tersebut terganggu.

Kegiatan penelitian ini meliputi:

1. Karakterisasi DAS terdegradasi termasuk karakteristik lahan terdegradasi;
2. Pemilihan jenis dan teknik silvikultur;
3. Teknologi konservasi tanah dan air;
4. Karakteristik masyarakat sekitar hutan;
5. Aspirasi masyarakat terhadap pembangunan kehutanan;
6. Pembuatan Demplot;
7. Penyusunan Paket Teknologi.

VIII. KOMPONEN PENELITIAN

Komponen penelitian meliputi:

A. **Luaran 1 : Pengelolaan Sumberdaya Lahan dan Air Wilayah Daratan**

Kegiatan penelitian:

1. Pendekatan Partisipatif dalam Pengembangan Model Rehabilitasi dan Konservasi Tanah dan Air;
2. Teknik Mitigasi Daerah Rawan Longsor;
3. Teknik Rehabilitasi dan Restorasi Lahan Bekas Tambang (emas, timah, batubara);
4. Kajian Kelayakan Teknik Aerial Seeding dan Hydroseeding;
5. Modelling Tataguna Lahan untuk Optimalisasi Tata Air.

B. Luaran 2: Teknik Pengelolaan Sumberdaya Lahan dan Air Wilayah Rawa Gambut

Kegiatan penelitian:
1. Teknik Pengelolaan Sumberdaya Lahan dan Air Wilayah Rawa Gambut

C. Luaran 3: Teknik Pengelolaan Sumberdaya Lahan dan Air Wilayah Pantai

Kegiatan penelitian:
1. Teknik pengelolaan Sumberdaya Lahan dan Air Wilayah Pantai

IX. METODOLOGI

A. Luaran 1: Teknik Pengelolaan Sumberdaya Lahan dan Air Wilayah Daratan

1. Kegiatan 1. Pendekatan Partisipatif dalam Pengembangan Model RLK- TA

Akan diperoleh melalui kegiatan-kegiatan:
1. Kajian biofisik lingkungan (identifikasi karakteristik lahan);
2. Kajian sosial ekonomi dan kelembagaan (termasuk aspirasi masyarakat);
3. Kebijakan pemerintah yang berkaitan dengan rehabilitasi lahan dan konservasi tanah dan air dengan pendekatan partisipasi masyarakat;
4. Pemilihan jenis dan teknik silvikultur;
5. Pemilihan teknologi konservasi tanah dan air;
6. Implementasi model yang sesuai dengan kondisi fisik dan sosekbud wilayah;
7. Pengamatan parameter pertumbuhan (tinggi dan diameter tanaman) dan parameter tanah (laju aliran permukaan dan erosi);
2. **Kegiatan 2. Teknik Mitigasi Daerah Rawan Longsor**

Akan diperoleh melalui kegiatan-kegiatan:

1. Pemetaan daerah rawan longsor;
2. Identifikasi daerah rawan longsor;
3. Mencari metode untuk mendapatkan indikator kerawanan longsor;
4. Pengukuran gerakan tanah dan sifat-sifat tanah;
5. Pemilihan jenis dan teknik silvikultur;
6. Pemilihan teknik konservasi tanah dan air;
7. Pembuatan bangunan penahan longsor;
8. Pengukuran kejenuhan tanah dan pengaruhnya terhadap kepekaan longsor.

Akan diperoleh melalui kegiatan-kegiatan:

1. Pemilihan lokasi;
2. Identifikasi karakteristik lahan (kondisi biofisik) bekas tambang (emas, timah, batubara);
3. Penentuan teknik rehabilitasi lahan, revegetasi dan silvikulturnya (termasuk persiapan bibit dan pemanfaatan limbah bekas tambang);
4. Penentuan spesies;
5. Penanaman dengan berbagai perlakuan;
6. Pemeliharaan tanaman;
7. Pengamatan parameter pertumbuhan (diameter dan tinggi tanaman) dan parameter tanah (tingkat kesuburan tanah: fisik dan kimia);

4. **Kegiatan 4. Kajian Kelayakan Teknik Aerial Seeding dan Hydroseeding**

Akan diperoleh melalui kegiatan-kegiatan:

1. Kajian jenis-jenis tanaman hutan yang cocok dengan teknik *aerial seeding* dan *hydroseeding*;
2. Kajian formula bahan/larutan untuk teknik *aerial seeding* dan *hydroseeding*;
3. Pengaruh kelerengan terhadap efektifitas teknik *aerial seeding* dan *hydroseeding*;
4. Aspek kelayakan ekonomi teknik *aerial seeding* dan *hydroseeding*.
5. **Kegiatan 5. Modelling Tataguna Lahan untuk Optimalisasi Tataair**

Akan diperoleh melalui kegiatan-kegiatan:

1. Pemantauan parameter tataair (sedimentasi dan debit air) di daerah hulu dan hilir;
2. Kajian tataguna (pola pemanfaatan) lahan di wilayah hulu dan hilir;
3. *Modelling* tataguna lahan yang memberikan hasil air optimal.

B. Luaran 2 : Teknik Pengelolaan Sumberdaya Lahan dan Air Wilayah Rawa Gambut

1. **Kegiatan 1. Teknik Pengelolaan Sumberdaya Lahan dan Air Wilayah Rawa Gambut**

Akan diperoleh melalui kegiatan-kegiatan:

1. Analisis biofisik dan tataair daerah rawa gambut;
2. Kajian pola pemanfaatan lahan rawa gambut;
3. Kajian tingkat kerentanan banjir dan daerah terkonstruksi di daerah rawa gambut;
4. Kajian pengaruh pemanfaatan lahan rawa gambut terhadap tataair;
5. Pembuatan Teknik Pengelolaan Lahan dan Air Wilayah Rawa Gambut.

C. Luaran 3. Teknik Pengelolaan Sumberdaya Lahan dan Air Wilayah Pantai

1. **Kegiatan 1. Teknik Pengelolaan Sumberdaya Lahan dan Air Wilayah Pantai**

Akan diperoleh melalui kegiatan-kegiatan:

1. Analisis biofisik dan tataair daerah pantai;
2. Kajian pola pemanfaatan lahan pantai;
3. Kajian tingkat kerentanan banjir dan daerah terkonstruksi di daerah gambut;
4. Kajian pengaruh pemanfaatan lahan gambut terhadap tataair;
5. Pembuatan Teknik Pengelolaan Lahan dan Air Wilayah Pantai.

X. RENCANA TATA WAKTU

Rencana tata waktu disajikan pada Tabel 1.
Table 1. Rencana Tata Waktu

<table>
<thead>
<tr>
<th>Kegiatan</th>
<th>Tahun</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUARAN 1. TEKNIK PENGELOLAAN SUMBERDAYA LAHAN DAN AIR WILAYAH DARAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1. Pendekatan Partisipatif dalam Pengembangan Model-model RLKTA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Kajian biofisik lingkungan (identifikasi karakteristik lahan);</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Kajian sosial ekonomi dan kelembagaan (termasuk aspirasi masyarakat);</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Kebijakan pemerintah yang berkaitan dengan rehabilitasi lahan dan konservasi tanah dan air dengan pendekatan partisipatif;</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>d. Pemilihan jenis dan teknik silvikultur;</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. Pemilihan teknologi konservasi tanah dan air;</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f. Implementasi model yang sesuai dengan kondisi fisik dan sosiokbud wilayah;</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>g. Pengamatan parameter pertumbuhan (tinggi dan diameter tanaman) dan parameter tanah (laJu aliran permukaan dan erosi);</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>h. Pembuatan publikasi Model-model RLKTA dengan pendekatan partisipatif.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2. Teknik Mitigasi Daerah Rawan Longsor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Pemetaan daerah rawan longsor;</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Identifikasi daerah rawan longsor;</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Mencari metode untuk mendapatkan indikator kerawanan longsor;</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Pengukuran gerakan tanah dan sifat-sifat tanah;</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. Pemilihan jenis dan teknik silvikultur;</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f. Pemilihan teknik konservasi tanah dan air;</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g. Pembuatan bangunan penahan longsor;</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h. Pengukuran kejenuhan tanah dan pengaruhnya terhadap kepekaan longsor</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>i. Pembuatan publikasi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Kegiatan</td>
<td>Tahun</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>2011</td>
<td>2012</td>
<td>2013</td>
<td>2014</td>
<td></td>
</tr>
<tr>
<td>1.3. Paket Teknologi Rehabilitasi Lahan Terdegradasi dalam Suatu DAS Khususnya di Lahan Bekas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tambang (emas, batubara, timah);</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Pemilihan lokasi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Identifikasi karakteristik lahan (kondisi biofisik) bekas tambang);</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Penentuan teknik rehabilitasi lahan, revegetasi dan silvikulturnya (termasuk persiapan bibit dan pemanfaatan limbah bekas tambang);</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Penentuan spesies;</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. Penanaman dengan berbagai perlakuan;</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f. Pemeliharaan tanaman;</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g. Pengamatan parameter pertumbuhan (diameter dan tinggi tanaman) dan parameter tanah (tingkat kesuburan tanah: fisik dan kimia)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h. Pembuatan Pedoman Rehabilitasi Lahan Bekas Tambang (emas, timah, batubara)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.4. Kajian Kelayakan Teknik Aerial seeding dan Hydroseeding					
a. Kajian jenis-jenis tanaman hutan yang cocok dengan teknik aerial seeding dan hydroseeding	X	X	X		
b. Kajian formula bahan/larutan untuk teknik aerial seeding dan hydroseeding;					
c. Pengaruh kelerengan terhadap efektifitas teknik aerial seeding dan hydroseeding;	X	X			
d. Aspek kelayakan ekonomi teknik aerial seeding dan hydroseeding.	X				
e. Informasi kelayakan teknik aerial seeding dan hydroseeding					

1.5. Modelling tataguna lahan untuk optimalisasi tataair					
a. Pemantauan parameter tatair (sedimentasi dan debit air) di daerah hulu;	X	X			
b. Pemantauan parameter tatair (sedimentasi dan debit air) di daerah hilir;					
c. Kajian tataguna (pola pemanfaatan) lahan di wilayah hulu;	X	X			
d. Kajian tataguna (pola pemanfaatan) lahan di wilayah hilir;					
e. Modelling tataguna lahan yang memberikan hasil air optimal.					X
LUARAN 2: TEKNIK PENGELOLAAN SUMBERDAYA LAHAN DAN AIR WILAYAH RAWA GAMBUT

2.1. Teknik pengelolaan sumberdaya lahan dan air Wilayah Rawa Gambut
 a. Analisis biofisik dan tata air daerah rawa gambut;
 X
 b. Kajian pola pemanfaatan lahan rawa gambut;
 X
 c. Kajian tingkat kerentanan banjir dan daerah terkonstruksi di daerah rawa gambut;
 X X
 d. Kajian pengaruh pemanfaatan lahan rawa gambut terhadap tata air;
 X
 e. Pembuatan Teknik Pengelolaan Lahan dan Air pada Lahan Rawa Gambut.

LUARAN 3: TEKNIK PENGELOLAAN SUMBERDAYA LAHAN DAN AIR WILAYAH PANTAI

3.1. Teknik evaluasi lahan dan air wilayah pantai
 a. Analisis biofisik dan tata air daerah pantai;
 X
 b. Kajian pola pemanfaatan lahan pantai;
 X
 c. Kajian tingkat kerentanan banjir dan daerah terkonstruksi di daerah pantai;
 X X
 d. Kajian pengaruh pemanfaatan lahan pantai terhadap tata air;
 X X
 e. Pembuatan Teknik Pengelolaan Lahan dan Air Wilayah Pantai.

XI. RENCANA LOKASI DAN UPT TERKAIT

Penelitian-penelitian dalam kegiatan ini akan dilakukan di Jawa dan luar Jawa, di lahan terdegradasi dan bagian DAS/sub DAS yang dianggap kritis.

XII. RENCANA BIAYA

Rencana Biaya diuraikan pada Tabel 2.
Table 2. Rencana Anggaran Penelitian Integratif 2010 – 2014

<table>
<thead>
<tr>
<th>No</th>
<th>Kode</th>
<th>Kegiatan</th>
<th>Biaya (X Rp. 1.000.000)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>2010</td>
</tr>
<tr>
<td>I</td>
<td>15.1</td>
<td>Pengelolaan Sumberdaya Lahan dan Air Wilayah Daratan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>15.1.1.1.1 Pendekatan Partisipatif dalam Pengembangan Model RLKTA</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>15.1.1.12 75 75 75 75 75 375</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>15.1.1.14 75 75 75 75 75 375</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>15.1.1.16 75 75 75 75 75 375</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>15.1.1.18 75 75 75 75 75 375</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>15.1.1.19 75 75 75 75 75 375</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>15.1.2.12 Teknik Mitigasi Daerah Rawan Longsor</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>15.1.3.1 Teknik Rehabilitasi dan restorasi lahan bekas tambang (emas)</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>15.1.3.1 Teknik Rehabilitasi dan restorasi lahan bekas tambang (timah)</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>15.1.3.16 Teknik Rehabilitasi dan restorasi lahan bekas tambang (batubara)</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>15.1.4.7 Kajian kelayakan teknik aerial seeding dan hydroseeding</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>15.1.4.12 75 75 75 75 75 375</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>15.1.5.1 75 75 75 75 75 375</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>15.1.5.7 75 75 75 75 75 375</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>15.1.5.12 75 75 75 75 75 375</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>15.1.5.17 75 75 75 75 75 375</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>JUMLAH I</td>
<td>1575</td>
</tr>
<tr>
<td>II</td>
<td>15.2</td>
<td>Teknik Pengelolaan Sumberdaya Lahan dan Air Wilayah Rawa Gambut</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>15.2.1.1 Teknik Pengelolaan Sumberdaya Lahan dan Air Wilayah Rawa Gambut</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>15.2.1.12 75 75 75 75 75 300</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>15.2.1.16 75 75 75 75 75 300</td>
<td></td>
</tr>
</tbody>
</table>
XIII. ORGANISASI

Organisasi kegiatan disajikan pada Tabel 3.

Table 3. Organisasi Kegiatan RPI Pengelolaan Sumberdaya Lahan dan Air Pendukung DAS

<table>
<thead>
<tr>
<th>No.</th>
<th>Instansi/UPT</th>
<th>Pelaksana</th>
</tr>
</thead>
</table>
| 1. | Pusat Litbang Hutan dan Konservasi Alam | DR.Ir.Pratiwi, MSc.
DR.Ir.Chairil A. Siregar, MSc.
Ir.Chairil Anwar, MSc.
I Wayan Susi D., S.Hut.MSi.
Ir.Sumarhani |
| 3. | Balai Penelitian Kehutanan Solo | Ir.Sukresno, MSc.; Ir.Irfan Budi Pramono, MSc., Ir.Benny Haryadi, MSc., Ir. Nining MSc., Ir. Heru D.R.) |
| 4. | Balai Penelitian Kehutanan Kupang | Ir. Gerson ND Njurumana, MSc.,Ir Ida Rachmawati, MSc. |
| 5. | Balai Penelitian Kehutanan Samboja | Septina S.Si; Antun P S.Hut. |
| 8. | Balai Penelitian Kehutanan Manokwari | Ir.David Seran |
XIV. DAFTAR PUSTAKA

UU No.7 Tahun 2004. Tentang Sumberdaya Air.

XV. KERANGKA KERJA LOGIS

<table>
<thead>
<tr>
<th>No.</th>
<th>Narasi</th>
<th>Indikator</th>
<th>Cara Verifikasi</th>
<th>Asumsi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Tujuan: Menyediakan informasi dan teknologi tepat guna, untuk menunjang kelestarian pengelolaan sumberdaya lahan dan air, khususnya yang terkait dengan rehabilitasi lahan terdegradasi agar sumberdaya lahan dan air yang terdegradasi dapat berfungsi kembali sebagai habitat flora, fauna dan secara keseluruhan sebagai penyangga kehidupan, termasuk didalamnya dapat meningkatkan perekonomian rakyat dengan meningkatkan partisipasi masyarakat dari mulai perencanaan, kegiatan pelaksanaan dan pengelolaan pasca rehabilitasi lahan.</td>
<td>· Luas lahan terdegradasi menurun
· Jumlah lahan berhutan meningkat
· Fungsi hidroorologis hutan menjadi lebih baik
· Kesadaran masyarakat akan fungsi hutan meningkat</td>
<td>· Statistik Kehutanan
· Demplot
· Gelar Teknologi</td>
<td>· Dukungan kebijakan pemerintah
· Dukungan masyarakat terhadap program pengelolaan sumberdaya lahan dan air</td>
</tr>
<tr>
<td>No.</td>
<td>Narasi</td>
<td>Indikator</td>
<td>Cara Verifikasi</td>
<td>Asumsi</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>---</td>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>2.</td>
<td>Sasaran:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Teknik Pengelolaan Sumberdaya Lahan dan Air Wilayah Daratan</td>
<td>Model-model RLKTA diaplikasikan oleh masyarakat</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Tersedianya Data dan Informasi tentang Model-model Rehabilitasi Lahan</td>
<td>Teknik mitigasi tanah longsor</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>dan Konservasi Tanah dan Air dengan Pendekatan Partisipatif;</td>
<td>Teknologi rehabilitasi lahan bekas tambang: emas, timah dan batubara</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Tersedianya Data dan Informasi Teknik Mitigasi Tanah Longsor;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Tersedianya Data dan Informasi Teknik Rehabilitasi dan Restorasi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lahan Terdegradasi dalam suatu DAS khususnya di lahan bekas tambang:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>emas, timah, batubara.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>e. Tersedianya Data dan Informasi Kelayakan Teknik Aerial seeding dan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hydroseeding</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Laporan akhir proyek, Paket Teknologi</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kondisi lingkungan mendukung, Dana tersedia, Tidak ada bencana alam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Narasi</td>
<td>Indikator</td>
<td>Cara Verifikasi</td>
<td>Asumsi</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>-----------</td>
<td>----------------</td>
<td>--------</td>
</tr>
<tr>
<td>f.</td>
<td>Tersedianya Data dan Informasi Model-model Tata Penggunaan Lahan untuk Optimalisasi Tatair</td>
<td>· Model-model Tata Penggunaan Lahan untuk Optimalisasi Tatair</td>
<td>· Laporan akhir proyek</td>
<td>· Kondisi lingkungan mendukung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>· Paket Teknologi</td>
<td>· Dana tersedia</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>· Tidak ada bencana alam</td>
<td></td>
</tr>
<tr>
<td>B.</td>
<td>Teknik Pengelolaan Sumberdaya Lahan dan Air Wilayah rawa Gambut</td>
<td>· Pedoman teknik pengelolaan sumberdaya lahan dan air wilayah rawa gambut</td>
<td>· Laporan akhir proyek</td>
<td>· Kondisi lingkungan mendukung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>· Paket Teknologi</td>
<td>· Dana tersedia</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>· Tidak ada bencana alam</td>
<td></td>
</tr>
<tr>
<td>C.</td>
<td>Teknik Pengelolaan Sumberdaya Lahan dan Air Wilayah Pantai</td>
<td>· Pedoman teknik pengelolaan sumberdaya lahan dan air wilayah pantai</td>
<td>· Laporan akhir proyek</td>
<td>· Kondisi lingkungan mendukung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>· Paket Teknologi</td>
<td>· Dana tersedia</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>· Tidak ada bencana alam</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Luran</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i.</td>
<td>Teknik Pengelolaan Sumberdaya Lahan dan Air Wilayah Daratan</td>
<td>· Demplot Rehabilitis Lahan dan Konservasi Tanah dan Air</td>
<td>· Laporan akhir proyek</td>
<td>· Kondisi lingkungan mendukung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>· 1 Paket Teknologi Mitigasi tanah longsor</td>
<td>· Dana tersedia</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>· 3 Paket Teknologi rehabilitasi lahan bekas tambang: emas, batubara, timah</td>
<td>· Tidak ada bencana alam</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>· 1 Paket /Informasi kajian kelayakan aerial seeding dan hydroseeding</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>· 1 Paket Modelling Tataguna lahan untuk optimalisasi tatair</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Narasi</td>
<td>Indikator</td>
<td>Cara Verifikasi</td>
<td>Asumsi</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>-----------</td>
<td>----------------</td>
<td>--------</td>
</tr>
<tr>
<td>2.</td>
<td>Teknik Pengelolaan Sumberdaya Lahan dan Air Wilayah Rawa Gambut</td>
<td>· 1 Paket Teknik Pengelolaan Sumberdaya Lahan dan Air Wilayah Rawa Gambut</td>
<td>· Laporan akhir proyek · Paket Teknologi</td>
<td>· Kondisi lingkungan mendukung · Dana tersedia · Tidak ada bencana alam</td>
</tr>
<tr>
<td>3.</td>
<td>Teknik Pengelolaan Sumberdaya Lahan dan Air Wilayah Pantai</td>
<td>· 1 Paket Teknik pengelolaan Sumberdaya Lahan dan Air Wilayah Pantai</td>
<td>· Laporan akhir proyek · Paket Teknologi</td>
<td>· Kondisi lingkungan mendukung · Dana tersedia · Tidak ada bencana alam</td>
</tr>
<tr>
<td>4</td>
<td>Kegiatan:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LUARAN 1. Pengelolaan Sumberdaya Lahan dan Air Wilayah Daratan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kegiatan 1. Pendekatan partisipatif dalam pengembangan model RLKTA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kegiatan:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Narasi</td>
<td>Indikator</td>
<td>Cara Verifikasi</td>
<td>Asumsi</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>---</td>
<td>----------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>a.</td>
<td>Kajian biofisik lingkungan (identifikasi karakteristik lahan);</td>
<td>· Karakteristik lahan</td>
<td>RPTP, KKL, DIP/DIK, RK, SPJ</td>
<td>· Peneliti dan teknisi tersedia</td>
</tr>
<tr>
<td>b.</td>
<td>Kajian sosial ekonomi dan kelembagaan (termasuk aspirasi masyarakat);</td>
<td>· Teknik silvikultur terpilih</td>
<td></td>
<td>· Anggaran tersedia tepat waktu</td>
</tr>
<tr>
<td>c.</td>
<td>Kebijakan pemerintah yang berkaitan dengan rehabilitasi lahan dan</td>
<td>· Teknologi KTA terpilih</td>
<td></td>
<td>· Kondisi lapangan terpenuhi</td>
</tr>
<tr>
<td></td>
<td>konservasi tanah dan air dengan pendekatan partisipatif;</td>
<td>· Karakteristik sosokbud masyarakat</td>
<td></td>
<td>· Koordinasi berjalan baik</td>
</tr>
<tr>
<td>d.</td>
<td>Pemilihan jenis dan teknik silvikultur;</td>
<td>· Kebijakan Pemerintah</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e.</td>
<td>Pemilihan teknologi konservasi tanah dan air;</td>
<td>· Implementasi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f.</td>
<td>Implementasi model yang sesuai dengan kondisi fisik dan sosokbud</td>
<td>· Pengukuran pertumbuhan, aliran permukaan, dan erosi</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>wilayah;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g.</td>
<td>Pengamatan parameter pertumbuhan (tinggi dan diameter tanaman) dan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>parameter tanah (laju aliran permukaan dan erosi);</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h.</td>
<td>Pembuatan publikasi Model-model RLKTA dengan pendekatan partisipatif.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Narasi</td>
<td>Indikator</td>
<td>Cara Verifikasi</td>
<td>Asumsi</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>-----------</td>
<td>----------------</td>
<td>--------</td>
</tr>
<tr>
<td>a.</td>
<td>Pemetaan daerah rawan longsor;</td>
<td>Peta daerah rawan longsor</td>
<td>RPTP, KKL, DIP/DIK, RK, SPJ</td>
<td>Peneliti dan teknisi tersedia</td>
</tr>
<tr>
<td>b.</td>
<td>Identifikasi daerah rawan longsor;</td>
<td>Daerah rawan longsor</td>
<td></td>
<td>Anggaran tersedia tepat waktu</td>
</tr>
<tr>
<td>c.</td>
<td>Mencari metode untuk mendapatkan indikator kerawanan longsor;</td>
<td>Indikator tingkat kerawanan longsor</td>
<td></td>
<td>Kondisi lapangan terpenuhi</td>
</tr>
<tr>
<td>d.</td>
<td>Pengukuran gerakan tanah dan sifat-sifat tanah;</td>
<td>Sifat-sifat tanah dan gerakan tanah teridentifikasi</td>
<td></td>
<td>Koordinasi berjalan baik</td>
</tr>
<tr>
<td>e.</td>
<td>Pemilihan jenis dan teknik silvikultur;</td>
<td>Jenis terpilih</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f.</td>
<td>Pemilihan teknik konservasi tanah dan air;</td>
<td>Teknik silvikultur terpilih</td>
<td></td>
<td></td>
</tr>
<tr>
<td>g.</td>
<td>Pembuatan bangunan penahan longsor;</td>
<td>Teknologi KTA terpilih</td>
<td></td>
<td></td>
</tr>
<tr>
<td>h.</td>
<td>Pengukuran kejenuhan tanah dan pengaruhnya terhadap kepekaan longsor;</td>
<td>Bangunan penahan longsor terbengun</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Narasi</td>
<td>Indikator</td>
<td>Cara Verifikasi</td>
<td>Asumsi</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>---</td>
<td>--------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Kegiatan 3. Teknik rehabilitasi lahan terdegradasi dalam suatu DAS khususnya di lahan bekas tambang (emas, batubara, timah); Kegiatan:</td>
<td>· Lokasi sesuai</td>
<td>RPTP, KKL, DIP/ DIK, RK, SPJ</td>
<td>· Peneliti dan teknisi tersedia</td>
</tr>
<tr>
<td></td>
<td>a. Pemilihan lokasi</td>
<td>· Paket teknologi rehabilitasi/revegetasi</td>
<td></td>
<td>· Anggaran tersedia epat waktu</td>
</tr>
<tr>
<td></td>
<td>b. Identifikasi karakteristik lahan (kondisi biofisik) bekas tambang)</td>
<td>· Spesies terpilih</td>
<td></td>
<td>· Kondisi lapangan terpenuhi</td>
</tr>
<tr>
<td></td>
<td>c. Penentuan teknik rehabilitasi lahan, revegetasi dan silvikulturnya (termasuk persiapan bibit dan pemanfaatan limbah bekas tambang);</td>
<td>· Kegiatan penanaman dan pemeliharaan</td>
<td></td>
<td>· Koordinasi berjalan baik</td>
</tr>
<tr>
<td></td>
<td>d. Penentuan spesies;</td>
<td>· Penetapan parameter dan pengamatan</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>e. Penanaman dengan berbagai perlakuan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>f. Pemeliharaan tanaman;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>g. Pengamatan parameter pertumbuhan (diameter dan tinggi tanaman) dan parameter tanah (tingkat kesuburan tanah: fisik dan kimia)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>h. Pembuatan pedoman rehabilitasi lahan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Narasi</td>
<td>Indikator</td>
<td>Cara Verifikasi</td>
<td>Asumsi</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>-----------</td>
<td>----------------</td>
<td>--------</td>
</tr>
</tbody>
</table>
| | Kegiatan 4. Kajian kelayakan teknik *aerial seeding* dan *hydroseeding*: | · Tanaman hutan yang cocok untuk dikembangkan dengan teknik *aerial seeding* dan *hydroseeding* | RPTP, KKL, DIP/DIK, RK, SPJ | · Peneliti dan teknisi tersedia
| | Kegiatan: | · Formula larutan untuk teknik *aerial seeding* dan *hydroseeding* | | · Anggaran tersedia tepat waktu
| | a. Kajian jenis-jenis tanaman hutan yang cocok dengan teknik *aerial seeding* dan *hydroseeding*; | · Kelerengan untuk teknik *aerial seeding* dan *hydroseeding*;
| | b. Kajian formula bahan/ larutan untuk teknik *aerial seeding* dan *hydroseeding*; | · Kelayakan ekonomi teknik *aerial seeding* dan *hydroseeding*;
| | c. Pengaruh kelerengan terhadap efektifitas teknik *aerial seeding* dan *hydroseeding*; | · Informasi kelayakan teknik *aerial seeding* dan *hydroseeding*
| | d. Aspek kelayakan ekonomi teknik *aerial seeding* dan *hydroseeding*. | | · Koordinasi berjalan baik
| | e. Informasi kelayakan teknik *aerial seeding* dan *hydroseeding* | | |
| | Kegiatan 5. Modelling Tataguna Lahan untuk Optimalisasi tataair | · Sedimentasi dan debit air di hulu dan hilir diketahui;
| | Kegiatan: | · Tataguna (pola pemanfaatan) lahan di wilayah hulu;
| | a. Pemantauan parameter tataair (sedimentasi dan debit air) di daerah hulu; | · Modelling tataguna lahan yang memberikan hasil air optimal diketahui. | RPTP, KKL, DIP/DIK, RK, SPJ | · Peneliti dan teknisi tersedia
| | b. Pemantauan parameter tataair (sedimentasi dan debit air) di daerah hilir; | | · Anggaran tersedia tepat waktu
| | c. Kajian tataguna (pola pemanfaatan) lahan di wilayah hulu; | | · Kondisi lapangan terpenuhi
| | d. Kajian tataguna (pola pemanfaatan) lahan di wilayah hilir; | | · Koordinasi berjalan baik
<p>| | e. Modelling tataguna lahan yang memberikan hasil air optimal | | |</p>
<table>
<thead>
<tr>
<th>No.</th>
<th>Narasi</th>
<th>Indikator</th>
<th>Cara Verifikasi</th>
<th>Asumsi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LUARAN 2. Teknik Pengelolaan Sumberdaya Lahan dan Air Wilayah Rawa Gambut</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| | Kegiatan 1. Teknik pengelolaan sumberdaya lahan dan air wilayah rawa gambut | a. Analisis biofisik dan tata air daerah gambut; b. Kajian pola pemanfaatan lahan gambut; c. Kajian tingkat kerentanan banjir dan daerah terkonstruksi di daerah gambut; d. Kajian pengaruh pemanfaatan lahan gambut terhadap tata air; e. Pembuatan Teknik Pengelolaan Lahan dan Air Wilayah Rawa Gambut | RTPP, KKL, DIP/DIK, RK, SPJ | - Peneliti dan teknisi tersedia
- Anggaran tersedia tepat waktu
- Kondisi lapangan terpenuhi
- Koordinasi berjalan baik |
| | **Luaran 3. Teknik Pengelolaan Sumberdaya Lahan dan Air Wilayah Pantai** | a. Analisis biofisik dan tata air daerah pantai; b. Kajian pola pemanfaatan lahan pantai; c. Kajian tingkat kerentanan banjir dan daerah terkonstruksi di daerah pantai; d. Kajian pengaruh pemanfaatan lahan pantai terhadap tata air; e. Pembuatan Teknik Pengelolaan Lahan dan Air pada Lahan Pantai | RTPP, KKL, DIP/DIK, RK, SPJ | - Peneliti dan teknisi tersedia
- Anggaran tersedia tepat waktu
- Kondisi lapangan terpenuhi
- Koordinasi berjalan baik |

Pengelolaan Sumberdaya Lahan dan Air Pendukung Pengelolaan DAS
XVI. EVALUASI

Table 4. Evaluasi RPI Pengelolaan Sumberdaya Lahan dan Air Pendukung Pengelolaan DAS

<table>
<thead>
<tr>
<th>JUDUL</th>
<th>OUTPUT</th>
<th>INSTITUSI PELAKSANA</th>
<th>CAPAIAN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>2010</td>
</tr>
<tr>
<td>RPI: Pengelolaan Sumberdaya lahan dan air pendukung pengelolaan DAS</td>
<td>Informasi dan teknologi tepat guna untuk menunjang pengelolaan sumberdaya lahan dan air, pendukung pengelolaan DAS</td>
<td>P3HKA</td>
<td>BPK Aek NAuli</td>
</tr>
<tr>
<td>LUARAN 1. Teknik Pengelolaan Sumberdaya Lahan dan Air Wilayah Daratan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUDUL</td>
<td>OUTPUT</td>
<td>INSTITUSI PELAKSANA</td>
<td>CAPAIAN</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>1. Pendekatan Partisipatif dalam Pengembangan Model RLKTA</td>
<td>Pedoman Model-model RLKTA dengan pendekatan partisipatif</td>
<td>P3HKA (DR.Ir. Pratiwi, MSc.; Ir.Sumarhani) BPK Solo (Ir. Nining, MSc., Drs.Irfan Budi Pramono, MSc.) BPK Kupang (Ir Ida Rachmawati, MSc., Ir Gerson MSc., MSi.) BPK Samboja (Antun P.S.Hut.) BPK Makasar (Ir Hunggul YSHN, MSc., Msi.) BPK Manokwari (Ir David Seran)</td>
<td>Data awal pertumbuhan tanaman dan kondisi fisik lingkungan, sosek dan budaya</td>
</tr>
<tr>
<td>2. Teknik mitigasi daerah rawan longsor</td>
<td>Pedoman mitigasi daerah rawan longsor</td>
<td>BPK Solo (Ir. Sukresno MSc.)</td>
<td>Data awal mengenai karakteristik dan sebaran daerah-daerah rawan longsor, indikator kerawanan longsor, dll.</td>
</tr>
<tr>
<td>JUDUL</td>
<td>OUTPUT</td>
<td>INSTITUSI PELAKSANA</td>
<td>CAPAIAN</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>---------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>3. Teknik rehabilitasi lahan bekas tambang emas</td>
<td>Pedoman rehabilitasi lahan bekas tambang emas</td>
<td>P3HKA (DR.Ir. Chairil Anwar Siregar, MSc.)</td>
<td>Data pertumbuhan tanaman dan kondisi awal lahan bekas tambang</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Data pertumbuhan dan kondisi lahan setelah perlakuan</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Informasi jenis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pedoman Rehabilitasi Lahan Bekas Tambang Emas</td>
</tr>
<tr>
<td>4. Teknik Rehabilitasi Lahan Bekas Tambang Timah</td>
<td>Pedoman rehabilitasi lahan bekas tambang timah</td>
<td>P3HKA (DR Ir Pratiwi, MSc.)</td>
<td>Kondisi biofisik awal lahan bekas tambang dan data pertumbuhan</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Data pertumbuhan awal pada jenis terpilih yang ditanam di lapangan</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Data pertumbuhan pada jenis terpilih yang ditanam di lapangan dengan</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Data pertumbuhan pada jenis terpilih yang ditanam di lapangan dengan</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pedoman Rehabilitasi Lahan Bekas Tambang Timah</td>
</tr>
<tr>
<td>5. Teknik rehabilitasi lahan bekas tambang batubara</td>
<td>Pedoman rehabilitasi lahan bekas tambang batubara</td>
<td>BPK Samboja (Septina S.Sci)</td>
<td>Informasi jenis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Informasi teknik silvikultur</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Informasi teknik KTA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pedoman Rehabilitasi Lahan Bekas Tambang Batubara</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Diseminasi hasil</td>
</tr>
<tr>
<td>JUDUL</td>
<td>OUTPUT</td>
<td>INSTITUSI PELAKSANA</td>
<td>CAPAIAN</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>----------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| 6. Kajian kelayakan teknik aerialseeding dan hydroseeding | Informasi mengenai kelayakan teknik aerialseeding dan hydroseeding | BPK Solo (Ir. Heru DR)
BPK Aek Nauli (Ir. Asep Sukmana) | 2010
Data jenis tanaman kehutanan yang cocok untuk teknik aerialseeding dan hydroseeding
2011
Data formula larutan yang memberikan persen tumbuh terbaik untuk teknik aerialseeding dan hydroseeding
2012
Data mengenai kelerengan yang sesuai untuk teknik aerialseeding dan hydroseeding
2013
Data mengenai aspek kelayakan secara ekonomi untuk teknik aerialseeding dan hydroseeding
2014
Diseminasi hasil |
| 7. Modelling tataguna lahan untuk optimalisasi tataair | Model-model tataguna lahan untuk optimalisasi tataair | P3HKA (I Wayan Susi Dharmawan, S.Hut., MSi)
BPK Manado (Ir. Laode Asir Tira, MSc.)
BPK Solo (Ir. Sukresno, MSc.) | 2010
Data pengamatan parameter tataair (sedimentasi dan debit air) daerah hulu
2011
Data pengamatan parameter tataair (sedimentasi dan debit air) daerah hilir
2012
Data pengamatan parameter tataair (sedimentasi dan debit air) daerah hulu
2013
Data pengamatan parameter tataair (sedimentasi dan debit air) daerah hilir
2014
Modelling tataguna lahan untuk optimalisasi tataair |
<table>
<thead>
<tr>
<th>JUDUL</th>
<th>OUTPUT</th>
<th>INSTITUSI PELOKSA</th>
<th>CAPAIAN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>2010</td>
</tr>
<tr>
<td>LUARAN 2. Teknik Pengelolaan Lahan dan Air Wilayah Rawa Gambut</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Teknik Pengelolaan Sumberdaya Lahan dan Air Wilayah Rawa Gambut</td>
<td>Pedoman Pengelolaan Lahan dan Air Wilayah Rawa Gambut</td>
<td>P3HKA (DR. Ir. Herman Daryono, MSc.)</td>
<td>Data awal kondisi biofisik daerah rawa gambut, termasuk pola pemanfaatan lahan dan sosekbud</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BPK Solo (Ir. Heru MSc., Ir. Benny Haryadi MSc.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BPK Samboja</td>
<td></td>
</tr>
<tr>
<td>LUARAN 3. Teknik Pengelolaan Lahan dan Air pada Lahan Pantai</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Teknik Pengelolaan Sumberdaya Lahan dan Air Wilayah Pantai</td>
<td>P3HKA (Ir. Chairil Anwar MSc.)</td>
<td>Data awal kondisi biofisik daerah pantai, termasuk pola pemanfaatan lahan dan sosekbud</td>
<td>Data mengenai tingkat kerentanan banjir dan daerah terkonstruksi di daerah pantai</td>
</tr>
</tbody>
</table>