ABSTRACT

Arbuscular mycorrhiza fungi (AMF) constitutes one of biological agent which is able to enhance the growth and productivity of plant. AMF reproduction has been frequently done as well as inoculum formulation improvement. It is done by adding other substances like organic fertilizer which is aimed at speeding up plant growth response prior to associating with AMF and increasing more growth after associating with AMF. Thus, this research is aimed at studying the response of AMF selected types G. etunicatum and Glomus sp. toward vermicompost and test vermicompost addition in increasing AMF inoculum quality. The research is factorial experiment with RAL using two treatment factors. First factor is AMF inoculum factor and the second factor is medium formulation. The research revealed that G. etunicatum is more tolerant on vermicompost addition compared to Glomus sp. (indigenous), the use of vermicompost, G. etunicatum type with 30% vermicompost result the highest number of propagul namely 7.7×10^6 propagul and the use of Glomus sp. type tends to have the same response on each vermicompost addition. Glomus sp. type with 30% vermicompost namely 0.12×10^6 propagul and Glomus sp. type with 40% vermicompost is 0.19×10^6. Vermicompost addition on the AMF reproduction contain relatively enough number of propagul and contain vermicompost residual as early nutrient supply for crop.

Key Words: Vermicompost, G. etunicatum, Glomus sp., Arbuscular Mycorrhiza Fungi (AMF)
ABSTRAK

Fungi Mikoriza Arbuskula (FMA) merupakan salah satu agen hayati yang terdapat di alam dan diketahui mampu meningkatkan pertumbuhan dan produktivitas tanaman. Perbanyakan FMA telah banyak dilakukan seiring dengan perbaikan formulasi inokulum. Perbaikan formulasi inokulum dilakukan dengan penambahan bahan-bahan lain seperti pupuk organik yang bertujuan untuk mempercepat respon pertumbuhan tanaman sebelum bersimbiosis dengan FMA dan lebih meningkatkan pertumbuhan setelah bersimbiosis dengan FMA. Penelitian ini bertujuan untuk menguji respon FMA jenis *G. etunicatum* dan *Glomus* sp. terhadap penambahan vermiokompos dan menguji penambahan vermiokompos dalam meningkatkan mutu inokulum FMA. Penelitian ini merupakan percobaan faktorial dengan RAL menggunakan 2 faktor perlakuan. Faktor pertama yaitu jenis inokulum FMA dan faktor kedua adalah formulasi media. Hasil penelitian menunjukkan bahwa inokulum FMA jenis *G. etunicatum* (terseleksi) dan *Glomus* sp. (*indigenous*) memberikan respon yang berbeda terhadap penambahan vermiokompos dimana jenis *G. etunicatum* lebih toleran dibanding jenis *Glomus* sp. Pada pemberian vermiokompos, jenis *G. etunicatum* dengan vermiokompos 30% memberikan jumlah propagul terbaik sebesar 7,7 x 10⁴ dan pada jenis *Glomus* sp. cenderung menghasilkan respon yang sama pada tiap penambahan vermiokompos. Jenis *Glomus* sp. dengan vermiokompos 30% memberikan jumlah propagul 0,12 x 10⁴ dan *Glomus* sp. dengan vermiokompos 40% adalah 0,19 x 10⁴. Penambahan vermiokompos pada perbanyakan FMA masih memberikan jumlah propagul yang relatif cukup dan sekaligus menghasilkan residu vermiokompos sebagai suplai hara awal bagi tanaman.

Kata Kunci: Vermiokompos, *G. etunicatum*, *Glomus* sp., Fungi Mikoriza Arbuskula (FMA)

I. PENDAHULUAN

Fungi Mikoriza Arbuskula (FMA) adalah salah satu agen hayati yang termasuk kedalam tipe Endomikoriza dan merupakan tipe fungi yang bersosiasi dengan kurang lebih 80% jenis tanaman (*Smith* dan *Read*, 1997). Jenis FMA dapat diisolasi dari alam, kemudian diperbanyak dan diinokulasikan kembali ke tanaman. FMA berperan penting dalam meningkatkan pertumbuhan tanaman terutama pada lahan marjinal dan meningkatkan daya hidup serta adaptasi tanaman terhadap lingkungannya.

Pemanfaatan FMA sebagai agen hayati masih sangat terbatas. Hal ini disebabkan oleh beberapa kendala seperti spesifikasi dari FMA itu sendiri, terbatasnya jumlah inokulum yang efektif untuk diaplikasikan di lapangan, ketidak-konsistensi mutu inokulum dan pengaruhnya terhadap tanaman memerlukan waktu yang lama jika dibandingkan dengan pupuk anorganik. Respon yang lambat pada pertumbuhan tanaman...
mengakibatkan konsumen lebih tertarik menggunakan pupuk anorganik. Dengan demikian, upaya reformulasi inokulum FMA perlu dilakukan dengan menambahkan bahan yang mengandung unsur hara sehingga dapat mempercepat responnya terhadap tanaman.

Salah satu alternatif pupuk yang dapat dicoba adalah vermikompos (vermicompost). Vermikompos dihasilkan dari kemampuan beberapa cacing tanah dalam mengkonsumsi residu organik seperti limbah rumah tangga, limbah industri seperti bubur kayu, residu panen seperti sayur-sayuran, daun-daunan, dedak padi, dedak jagung, kotoran ternak, kompos dan sebagainya (Ndewga et al., 1999).

Penambahan vermikompos pada produksi FMA dilakukan untuk mendapatkan suatu formulasi yang memberikan keuntungan ganda, tidak saja berasal dari FMA akan tetapi juga dari vermikompos yang ditambahkan. Penambahan bahan yang mengandung unsur hara dapat meningkatkan pertumbuhan tanaman sebelum FMA bersimbiosis dan lebih meningkatkan pertumbuhan setelah simbiosis terbentuk. Dengan latar belakang di atas, penelitian ini bertujuan untuk menguji respon FMA jenis terseleksi G. etunicatum dan jenis Glomus sp. (endogenous) terhadap penambahan vermikompos dan menguji penambahan vermikompos dalam meningkatkan mutu inokulum FMA.

II. BAHAN DAN METODE

A. Waktu dan Tempat

Penelitian ini dilaksanakan di rumah kaca Laboratorium Ekologi Hutan dan Laboratorium Silvikultur Fakultas Kehutanan IPB selama 6 (enam) bulan.

B. Bahan dan Alat

Bahan yang digunakan adalah benih Pueraria javanica, inokulum FMA jenis Glomus etunicatum terseleksi (eksotik) dengan kode NPI 126 (diperbanyak dari inokulum mycofer) di Laboratorium Silvikultur, inokulum FMA jenis Glomus sp. (endogenous) yang diisolasi dari bawah tegakan jati Muna (koleksi laboratorium Agronomi Fakultas Pertanian UNHALU Kendari), vermikompos, zeolit, bahan-bahan staining, larutan PVLG dan melzer, hyponex merah. Alat-alat yang digunakan adalah saringan spora (63 μm, 125 μm, 250 μm, dan 500 μm), pinset spora, centrifuge, timbangan analitik, mikroskop binokuler Nikon YS100, mikroskop stereo binokuler Carton NSWT, Mikroskop Monokuler FCL 15 EX-N, kaca obyek dan gelas penutup.

C. Metode

Perbanyakan inokulum FMA

1. Persiapan media tanam zeolit dengan vermi- kompos sesuai perlakuan formulasi dan dimasukkan pada gelas plastik sebagai media kultur pot.

2. Pengecambahan benih P. javanica selama ± satu minggu atau sampai muncul 2 helai daun lalu dipindahkan pada media tanam kultur pot yang sudah disiapkan tadi.

3. Pemeliharaan dan penyiraman, khususnya pada perlakuan tanaman inang dengan inoku- lasi FMA tanpa vermikompos pemberian larutan hara hyponex merah (25-5-20)
dilakukan seminggu sekali dengan konsentrasi 1 g/l air sebanyak 5 ml. Kultur pot disusun sesuai layout penelitian kemudian dipelihara selama tiga bulan di rumah kaca.

D. Rancangan Penelitian

Penelitian ini merupakan percobaan faktorial dengan RAL menggunakan 2 faktor. Faktor pertama yaitu jenis inokulum FMA yang terdiri dari tiga taraf: 1) Kontrol (Mo), 2) FMA jenis *G. etunicatum* (Mb) dan 3) FMA jenis *Glomus* sp. (*indigenous*) (Mk). Faktor kedua adalah formulasi media terdiri dari K0 (100% zeolit), K1 (90% zeolit dicampur 10% vermikompos), K2 (80% zeolit dicampur 20% vermikompos), K3 (70% zeolit dicampur 30% vermikompos), dan K4 (60% zeolit dicampur 40% vermikompos).

Peubah yang diamati adalah:

1. Kolonisasi akar yang dihitung berdasarkan rumus:

 \[
 \text{% Kolonisasi FMA} = \frac{\text{Jumlah bidang pandang yang terkolonisasi}}{\text{Jumlah total bidang pandang}} \times 100\%
 \]

 (Rajapakse dan Miller, 1992).

2. Jumlah spora pada akhir pengamatan. Pemisahan spora dilakukan dengan metode tuang saring basah (Brundrett *et al.*, 1994), dan dilakukan perhitungan spora dibawah mikroskop stereo binokuler carton NSWT.

Cara perhitungan jumlah propagul yaitu dengan memilih tiga seri pengenceran yang menghasilkan kolonisasi akar, dimana \(P_1 \) infeksi tertinggi, \(P_2 \) dan \(P_3 \) adalah jumlah infeksiya berturut-turut di bawah \(P_1 \). Kemudian menentukan angka pada tabel MPN berdasarkan nilai \(P_1 \), \(P_2 \) dan \(P_3 \) dan kombinasi dari angka dikali dengan faktor pengenceran \(P_2 \). Selang kepercayaan 95% dapat dihitung berdasarkan rumus:

\[
\text{Log } \Omega_{a,b} = \text{Log MPN } \pm 0.326
\]

Keterangan:

MPN = *Most Probable Number*, untuk menghitung populasi propagul FMA

\(a, b \) = selang batas atas dan batas bawah

E. Analisis Data

Data hasil pengamatan dari masing-masing peubah dilakukan analisis sidik ragam. Jika hasil analisis sidik ragam menunjukkan F hitung > F tabel maka dilanjutkan dengan uji Duncan pada taraf kepercayaan 95% untuk membandingkan antar perlakuan (Majitik dan Sumertajaya, 2002). Pengolahan data dilakukan dengan menggunakan program komputer SAS V6.12 (*Statistical Analysis System*).

III. HASIL DAN PEMBAHASAN

Perbanyakan inokulum FMA dengan penambahan pupuk vermikompos dilakukan untuk mendapatkan suatu inokulum yang tidak hanya menyediakan propagul FMA akan tetapi juga didapatkan residu vermikompos. Pupuk vermikompos diberikan dalam berbagai taraf untuk mendapatkan komposisi yang seimbang dimana kolonisasi dan pembentukan spora masih dapat terjadi dengan baik. Sedangkan residu pupuk vermikompos dapat digunakan oleh tanaman sebagai sumber unsur hara awal sebelum mendapatkan suplai unsur hara secara
optimal dari asosiasinya dengan cendawan mikoriza.

A. Kolonisasi akar dan jumlah spora

Hasil penelitian menunjukkan jenis FMA dan formulasi media berpengaruh nyata terhadap kolonisasi akar dan jumlah spora inang *P. javanica*. FMA jenis *G. etunicatum* asal Bogor cenderung lebih toleran terhadap penambahan vermikompos dibandingkan dengan FMA jenis *Glomus* sp. (*endogenous*). Perlakuan *G. etunicatum* dengan vermikompos sekitar 30% sampai 40% masih menghasilkan respon yang lebih baik dibandingkan dengan jenis *Glomus* sp. (Gambar 1 dan 2).

![G. etunicatum vs Glomus sp.](image)

Gambar 1. Pengaruh jenis inokulum FMA dan formulasi media terhadap kolonisasi akar *P. javanica* pada 12 MST di rumah kaca

Komposisi perbandingan hara yang ditambahkan juga dapat mempengaruhi kemampuan kolonisasi akar dan sporulasi dari jenis FMA. Penelitian Douds dan Schenck (1990) mendapatkan bahwa terjadi perbedaan kolonisasi akar dan sporulasi pada jenis FMA *A. longula*, *Sc. heterogama*, *G. intraradices* dan *Gi. margaria*.
dengan perbedaan komposisi larutan hara Ca(NO₃)₂, KNO₃, KH₂PO₄, dan MgSO₄ yang diberikan. Pada umumnya terjadi peningkatan jumlah spora dan kolonisasi pada komposisi larutan hara yang diberikan tanpa P. Komposisi hara terbaik terdapat pada larutan Ca(NO₃)₂ 904 mg kg⁻¹, KNO₃ 606 mg kg⁻¹, KH₂PO₄ 0 mg kg⁻¹, dan MgSO₄ 240 mg kg⁻¹. Namun setiap jenis FMA memiliki karakter dan kemampuan yang berbeda dalam merespon penambahan pupuk yang diberikan (Bhadalung et al., 2005) dan FMA jenis Glomus digolongkan ke dalam jenis yang agak peka dan peka terhadap tingkat pemupukan.

Gambar 3. Hifa (a) dan vesikel (b) akar P. javanica pada 12 MST di rumah kaca (Pengamatan menggunakan mikroskop binokuler Nikon Ys100 dengan perbesaran 100x)

Pada analisis kandungan vermi kompos didapatkan nitrogen sebesar 0,63% dan P sebesar 0,35%. Peningkatan kandungan P ini diduga menurunkan permeabilitas akar sehingga mengurangi eksudat yang dapat disuapli oleh FMA. Penelitian ini memperkuat simpulan Mohammad et al. (2004), bahwa pada benih gandum (Triticum aestivum var. Swift) yang diinfeksi dengan inokulum akar G. intraradices kemudian ditaburkan pada tanah kahat P dan agak masam (pH 5,5) yang dipupuk dengan 0, 5, 10 dan 20 kg ha⁻¹ pupuk P komersial, terjadi peningkatan kolonisasi akar pada tanaman yang diinokulasi mikoriza seiring dengan kenaikan dosis P akan tetapi terus menurun pada taraf P tertinggi. Selain itu perbedaan jenis bahan organik dan takaran masukan bahan organik berpengaruh nyata terhadap daya infeksi dan jumlah propagul FMA alam (Tanu et al., 2004).

Keseimbangan hara juga mempengaruhi pertumbuhan tanaman sehingga secara tidak langsung mempengaruhi perkembangan kolonisasi FMA. Dalam sel-sel hidup, reaksi-reaksi biokimia terjadi secara berantai dan ada saling ketergantungan antara reaksi yang satu dengan reaksi lainnya. Oleh sebab itu bila ada satu saja hara esensial dalam keadaan kahat atau berlebihan maka dapat menghambat satu reaksi enzim. Hal ini didukung oleh beberapa penelitian yang
menunjukkan bahwa rasio hara mempengaruhi respon mikoriza. Johnson dan Pfleger (1992) menunjukkan bahwa hara pupuk yang berimbang merangsang kolonisasi FMA pada tanaman jagung. Sedangkan pemupukan N dengan dosis yang terlalu tinggi atau terlalu rendah dapat menurunkan kolonisasi. Selang antara kategori tinggi dan rendah kemungkinan berdasarkan pada kriteria penilaian sifat kimia tanah. Johnson dan Pfleger (1992) menyatakan bahwa aplikasi pupuk P saja ternyata menurunkan kolonisasi mikoriza namun pemupukan dengan hara NPK berimbang tidak menurunkan infeksi. Selanjutnya dinyatakan juga bahwa status nitrogen tanaman inang mempengaruhi respon mikoriza terhadap P, dimana ada korelasi negatif antara kolonisasi akar oleh FMA dengan konsentrasi N dan nisbah N : P pada tanaman Artemisia vulgar. Penelitian Bressan (2002) pada akar tanaman Anthyllis vulneraria sub sp. sampaiana (Kidney vetch) yang diinokulasi dengan FMA jenis G. etunicatum Becker & Gerdemann (121 INVAM S329) dengan tiga konsentrasi media N (5, 10 dan 50 mg L\(^{-1}\)) pada taraf P konstan (2 mg L\(^{-1}\)) dan tiga konsentrasi P media (2, 10 dan 20 mg L\(^{-1}\)) pada taraf N konstan (5 mg L\(^{-1}\)) mendapatkan interaksi antara P dan N berpengaruh nyata terhadap perkecambahan spora, pertumbuhan akar, dan panjang akar terkolonisasi.

B. Pengujian potensi inokulum FMA

Setelah perbanyakan inokulum FMA dilakukan, tahapan selanjutnya adalah pengujian mutu inokulum FMA yang telah diproduksi. Hal tersebut merupakan prasyarat utama yang perlu diperhatikan dalam produksi inokulum FMA. Untuk itu perlu adanya standarisasi mutu inokulum agar tidak merugikan konsumen dan efektif dalam penggunaannya. Selama ini belum ada standar baku yang ditetapkan dalam menentukan mutu inokulum FMA di Indonesia, demikian pula dengan sistem pengawasan mutunya. Penentuannya hanya sebatas melihat jumlah propagulnya dengan asumsi semakin banyak jumlah propagul infektif maka akan semakin baik karena peluang untuk menginfeksi semakin besar.

Pengujian inokulum harus diikuti dengan pengujian mutu inokulum yang didapatkan untuk mengetahui seberapa banyak dosis yang akan diberikan ke tanaman. Salah satu cara yang dapat digunakan dalam standardisasi mutu adalah menggunakan jumlah propagul sebagai ukuran untuk menyatakan potensi inokulum. Pada dasarnya inokulum tidak hanya mengandung spora akan tetapi juga beberapa jenis propagul infektif lainnya seperti vesikel (khusus Glomus), dan hifa dari mikoriza yang memiliki kemampuan untuk mengkolonisasi akar. Pengujian potensi inokulum dilakukan dengan menggunakan test MPN (The Most Probable Number), test ini untuk menentukan jumlah propagul infektif dengan beberapa pengenceran yang berbeda.

Hasil pengujian potensi formulasi inokulum FMA pada perlakuan pemberian vermicompos menghasilkan jumlah propagul tertinggi adalah FMA jenis G. etunicatum dengan vermicompos 30% dan terendah dihasilkan oleh Glomus sp. dengan vermicompos 30% yaitu 0,12 \(\times 10^4\) propagul (Tabel 1). Feldmann dan Iczak (1992) menyatakan bahwa 30-50 propagul sudah dapat menghasilkan infeksi pada akar tanaman. Penelitian Basrudin (2005) mendapatkan bahwa perlakuan pemberian asam humat 0,1% dengan
Tabel 1. Potensi inokulum cendawan mikoriza arbuskula per 100 g media zeolit

<table>
<thead>
<tr>
<th>Perlakuan (Treatment)</th>
<th>Jumlah propagul infektif (KA 10%) (number of infective propagul)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jumlah/100 g zeolit</td>
</tr>
<tr>
<td></td>
<td>Number/100 g of zeolit</td>
</tr>
<tr>
<td>G. etunicatum</td>
<td>308 x 10^4</td>
</tr>
<tr>
<td>G. etunicatum dengan vermikompos 30%</td>
<td>7,7 x 10^4</td>
</tr>
<tr>
<td>G. etunicatum dengan vermikompos 40%</td>
<td>5,4 x 10^4</td>
</tr>
<tr>
<td>G. mos</td>
<td>10120 x 10^4</td>
</tr>
<tr>
<td>G. mos dengan vermikompos 30%</td>
<td>0,12 x 10^4</td>
</tr>
<tr>
<td>G. mos dengan vermikompos 40%</td>
<td>0,19 x 10^4</td>
</tr>
</tbody>
</table>

Keterangan: *n* Kisaran jumlah propagul pada selang kepercayaan 95 %

Tanaman inang *S. vulgare* menghasilkan jumlah propagul terbesar yaitu 1277 (9598-2729) per 100 g media uji. Hal ini mengindikasikan bahwa penambahan vermikompos masih memberikan jumlah propagul yang relatif baik dan sekaligus menghasilkan residu vermikompos dari inokulum tersebut. Kondisi inilah yang memberikan nilai tambah bagi perlakuan yang menggunakan vermikompos.

Hasil yang didapat dari pengujian potensi inokulum menginformasikan bahwa jumlah propagul dari inokulum yang diujiikan relatif masih cukup tinggi termasuk perlakuan penambahan vermikompos. Walaupun dari perhitungan kolonisasi akar dan jumlah spora relatif lebih rendah dibanding perlakuan pemberian hara hyponex merah. Hal ini disebabkan karena nilai MPN tidak hanya ditentukan oleh kedua faktor tersebut, akan tetapi diduga lebih dipengaruhi oleh hifa eksternalnya. Hasil ini selaras dengan penemuan Basrudin (2005) yang mendapatkan bahwa infeksi akar dan jumlah spora tidak memberikan kontribusi yang besar terhadap nilai MPN.

IV. KESIMPULAN DAN SARAN

A. Kesimpulan

Inokulum FMA jenis *G. etunicatum* (terseleksi) dan *Glomus sp. (indigenous)* memberikan respon yang berbeda terhadap penambahan vermikompos dimana jenis *G. etunicatum* lebih toleran dibanding jenis *Glomus sp. (indigenous)*. Pada pemberian vermikompos, jenis *G. etunicatum* dengan vermikompos 30% memberikan jumlah propagul terbaik sebesar 7,7 x 10^4 dan pada jenis *Glomus sp.* cenderung menghasilkan respon yang sama pada tiap penambahan vermikompos yang diberikan. Jenis *Glomus sp.* dengan vermikompos 30% memberikan jumlah propagul 0,12 x 10^4 dan *Glomus sp.* dengan vermikompos 40% adalah 0,19 x 10^4. Penambahan vermikompos pada perbanyakan FMA masih memberikan jumlah propagul yang relatif cukup dan sekaligus menghasilkan residu vermikompos sebagai suplai hara awal bagi tanaman.
B. Saran

Perlu adanya uji lanjut dengan FMA jenis-jenis lain untuk melihat responsnya terhadap penambahan vermikompos. Hasil reformulasi inokulum yang dihasilkan perlu diberikan ke tanaman dalam keadaan masih segar sehingga dapat menghasilkan respon pertumbuhan dan kolonisasi akar terbaik.

UCAPAN TERIMA KASH

Ucapan terima kasih kepada Dr. Ir. Irdika Mansur, M.For.Sc, Dr. Ir. Sri Wilarso Budi, MS. Dr. Ir. Dedy Duryadi Solihin, DEA, Dr. Ir. Iskandar Z. Siregar, M.For.Sc., dan Dr. Ir. Abimanyu D. Nusantara, M.P yang telah memberikan petunjuk dan saran dalam melakuk-kan penelitian ini.

DAFTAR PUSTAKA

Ecosystems and Environment 103(1):245-249.

