INTRODUCTION

- On farm tree planting:
 - Integral part of sustainable rural development in marginal areas
 - Providing financial and environmental benefits

- *Falcataria*-based farm forestry is an innovative practice:
 - Enhancing productivity of marginal areas
 - Contributing to carbon sequestration

- Indonesian governments at all levels are promoting tree planting on farmland
 - Soeharto’s era has spent in an average amount of US $ 100 -125 million annually for at least 250 re-greening projects (Mangundikoro, 1986)
 - In 2003-2009, the government has spent at least US $ 300 million annually to run national movement for land and forest rehabilitation
 - The establishment of farm forestry on farmland is widely varied
INTRODUCTION

- Adoption of innovation study, whether in the field of agroforestry or others, is a mature research area. See, for instance, comprehensive reviews of by Pattayanak, Mercer, Sills, and Yang (2003) and by Mercer (2004). Yet…
- Most of studies applied dichotomous choice model and thereby they cannot properly explain the individual timing of an adoption decision, meaning the time a farmer takes until he/she adopts an innovation.

- Examines the information gap between static and dynamic nature of adoption studies by providing information on duration analysis of adoption of Falcataria-based farm forestry.
- The main objective is to seek determinant factors contributing on the speed of adoption of Falcataria-based farm forestry.

METHOD

- Cross-sectional Survey Method
- Location: Tempurejo Village, Wonosobo
 - Headwater of sub-watershed Medono
 - Ring two of green-belt of Wadaslintang reservoir → irrigation, flood control
- Sample: 117 farmers selected randomly
- Face-to-face interview using structured questionnaire:
 - Age, education, off-farm employment, membership to farmers’ group, family size, farm size.
METHOD

Empirical Model Specification

- Duration analysis → survival analysis or event history analysis

First learn/hear

Survival time → Failure

Survival time ≡ non-adoption period
Failure ≡ adoption

Suppose \(t \) as “failure” time, at which farmer makes a transition from non-adoption to adoption. Probability to adopt is at time \(t \)

\[
F(t) = \Pr(T \leq t)
\]
Prob. density function → \(f(t) = \frac{dF(t)}{dt} \)

- \(T \) is non-negative cont. random variable → stay in non-adoption period. Variable \(t \) is actual time of adoption. But, not all farmers had adopted at time \(t \). Probability of not adopting at time \(t \) is defined as a survival function \(S(t) \)

\[
S(t) = 1 - F(t) = \Pr(T > t)
\]

- To explore relationship failure and survival → hazard function \(h(t) \) = instantaneous potential = conditional failure rate

\[
h(t) = \lim_{\Delta t \to 0} \frac{\Pr(t \leq T \leq t + \Delta t | T \geq t)}{\Delta t} = \lim_{\Delta t \to 0} \frac{f(t)}{1 - F(t)} = \frac{f(t)}{S(t)}
\]
To account for the influence of determinant factors, we use Cox proportional-hazard regression:

\[h(t) = h_0(t) \exp(\beta'x) \]

- **Hazard rate**
- **Baseline hazard function**
- **Covariates and regression parameters**

Empirical model 1

\[
ADOPT(i,t) = \exp \left(\beta_1\text{AGET}_{i,t} + \beta_2\text{EDUC}_{i,t} + \beta_3\text{OFFE}_{i,t} + \beta_4\text{PRIC}_{i,t} \right)
\]

Empirical model 2

\[
ADOPT(i,t) = \exp \left(\beta_1\text{AGET}_{i,t} + \beta_2\text{EDUC}_{i,t} + \beta_3\text{OFFE}_{i,t} + \beta_4(\text{EDUC} \times \text{OFFE})_{i,t} \right)
\]

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description of the variable</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent variable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADOPT</td>
<td>Number of years from the date of first hearing to the date of adoption. (years)</td>
<td>11.026</td>
<td>5.149</td>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td>Explanatory variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (AGET)</td>
<td>Age of farmer when he adopted farm forestry. (years)</td>
<td>31.453</td>
<td>8.107</td>
<td>15</td>
<td>53</td>
</tr>
<tr>
<td>Education (EDUC)</td>
<td>Years of formal education. (years)</td>
<td>6.231</td>
<td>2.339</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Off-farm employment (OFFE)</td>
<td>Farmer has off-farm employment. 1 = Yes, 0 = No</td>
<td>0.479</td>
<td>-</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Member of farmers’ group (FORG)</td>
<td>Membership to farmers’ group. 1 = Yes, 0 = No</td>
<td>0.393</td>
<td>-</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Farm size (FARM)</td>
<td>Size of farmland owned by farm household at the time of adoption. (ha)</td>
<td>0.807</td>
<td>0.675</td>
<td>0.018</td>
<td>3.023</td>
</tr>
<tr>
<td>Price (PRIC)</td>
<td>Relative price of Falcataflogo price of coffee bean/kg at the time of adoption.</td>
<td>11.054</td>
<td>2.620</td>
<td>7.619</td>
<td>20</td>
</tr>
<tr>
<td>Number of adults (HHSZ)</td>
<td>Number of adults in household with the age more than 15 years old. (people)</td>
<td>3.504</td>
<td>1.119</td>
<td>1</td>
<td>8</td>
</tr>
</tbody>
</table>
Balitekdas

RESULTS

• History: Turi (Sesbania grandiflora) and Lamtoro (Leucena sp)
• Kutuloncat (Heteropsylacubana) outbreaks in the late of 1980s
• Sengonisasi
• Karat puru (Gall rust) outbreaks
• Jabon (Anthocephalus cambada) emergence and popularity
• Yet, the winner is Sengon (Falcataria)
RESULTS

<table>
<thead>
<tr>
<th>Variables</th>
<th>Model 1</th>
<th>Model 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hazard Ratio</td>
<td>Standard Errors (Robust)</td>
</tr>
<tr>
<td>1. AGET</td>
<td>1.044 ***</td>
<td>0.013</td>
</tr>
<tr>
<td>2. EDUC</td>
<td>1.325 ***</td>
<td>0.092</td>
</tr>
<tr>
<td>3. OFFE</td>
<td>2.920 ***</td>
<td>0.634</td>
</tr>
<tr>
<td>4. EDUC x OFFE</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5. FORG</td>
<td>3.570 ***</td>
<td>0.871</td>
</tr>
<tr>
<td>6. HHSZ</td>
<td>0.952</td>
<td>0.089</td>
</tr>
<tr>
<td>7. FARM</td>
<td>1.297 **</td>
<td>0.146</td>
</tr>
<tr>
<td>8. PRIC</td>
<td>1.272 ***</td>
<td>0.069</td>
</tr>
</tbody>
</table>

Log-likelihood: -398.183 - 393.601

Wald chi²: 192.84 *** 225.83 ***

Notes: *, **, *** significant at the 10%, 5%, and 1% level, respectively

CONCLUSIONS

- Determinant factors influencing the speed of adoption were age of farmer, education, off-farm employment, farm size, membership to farmers’ group and price.
- The influence of off-farm employment and membership to farmers’ group to the speed of adoption are much higher than any other factors. F
- Farmers who are well educated and have off-farm employment are among the earlier adopters.
- Policy insights derived in the context of this study suggest that speeding up Falcataria-based farm forestry requires policies that promote farmers’ participation in off-farm income activities and timber markets in addition to access to

