Molecular Phylogeny of Moluccan Shorea Species Inferred from Chloroplast DNA Sequences and *PgiC* Nuclear Region

Henti Hendalastuti Rachmat*¹), Koichi Kamiya²), Atok Subiakto¹), Ko Harada²)

Dipterocarpaceae

Three subfamilies, including
- Pakaraimoideae in South America
- Monotoideae in Africa
- **Dipterocarpoideae** in SE Asia

Asian tropical subfamily Dipterocarpoideae
- 13 genera and 470 species ([Ashton, 1982](#))
- Many are important for commercial timber
- The most abundant group in SE Asian lowland tropical forests
Identification of dipterocarps

Not an easy task

→ vary with age and habitats (Symington, 1974)

General identification

→ morphology, wood anatomy, palynology, and fossil record (Ashton, 1980)

More recent years

→ DNA molecular marker

→ Suitable for discriminating closely related species, not influenced by the environment or by the developmental stage of the plant.

Distribution of *S. selanica* and *S. assamica* ssp. koordersii

→ Both are very limited number of species in the genus *Shorea* whose distribution extends through to east of the Wallace Line

→ Section *Anthoshorea*, known as *Shorea* White Meranti in timber trade
1. Phylogeny of Sub-family Dipterocarpoideae

(Modified from Dayananda et al, 2006; trnL-trnF spacer, trnl intron and matK cpDNA)

2. Classifying Shorea species based on cpDNA sequences

(Tsumura et al, 2011; trnL-trnF spacer, trnl intron, psbC-trnS, and trnH-psbA-trnK ~ 4.2 kbp

Only include *Shorea assamica* (with no sub species noted) and none are include *Shorea selanica*
Plant materials

S.selanica \rightarrow four individuals from CRFRDC arboretum

S.assamica ssp. koordersii \rightarrow one each from Mangole, Sanana, Obi Island

Loci used

cpDNA based on Tsumura *et al* (2011)

\rightarrow *trnL-trnF* spacer, *trnL* intron, *trnH-psbA-trnK*, psbC-*trnS*

Nuclear gene based on Kamiya *et al* (2005)

\rightarrow *PgiC*

Result & Discussion

1. Phylogenetic position of *S.selanica* and *S. assamica ssp. koordersii* as inferred by *cpDNA* sequence

Alignment of the matrix contained 4363 bp

All four *Shorea* clades are supported by $> 90\%$ of bootstrap values

S. selanica nested within the clade of *Shorea Red Meranti*

> *S. assamica ssp koordersii* nested within the clade of *Shorea White Meranti*
2. Phylogenetic position of *S. selanica* and *S. assamica ssp. koordersii* as inferred by *PgiC* nuclear sequences

Alignment of the matrix contained 1638 bp

Grouping of four group of Shorea based on PgiC nuclear gene were also supported

S. selanica nested within the clade of Shorea Red Meranti

S. assamica ssp koordersii nested within the clade of Shorea White Meranti

Yulita et al. (2005)

trnL-trnF intron, trnL-trnF spacers

S. selanica was the only *Shorea* species that grouped into Hopea clade
Modified from Yulita et al. (2005); ITS region

S. selanica was grouped together with section *Richetioides* (*Shorea* Yellow Meranti) and *Hopea*

Intraspecific hybridization is not uncommon among dipterocarps

Molecular identification for hybridization and introgression
- Kamiya et al. (2005)
- Ishiyama et al. (2003, 2005)
- Cao et al. (2006)
- Kamiya et al. (2011)

Our present study **apparently confirmed** *S. selanica* as the member of *Shorea* Red Meranti which is fully support its present taxonomical and morphological classification
Conclusion

- Based on both cpDNA nucleotide sequences and PgiC nuclear gene, *Shorea selanica* was confirmed to be in the clade of Shorea red meranti while *Shorea assamica ssp. koordersii* was confirmed to be in the clade of Shorea white meranti

- Both species are congruent with their current botanical section